โ† Back to Blogs

Tutorial

How to Build a Micro-SaaS in a Weekend Using OpenAI

Stop overthinking. Here is a practical, code-first guide to wrapping the OpenAI API into a profitable developer tool that you can ship in 48 hours.

The "AI Wrapper" business model is often criticized, but it remains one of the fastest ways for developers to generate their first $1,000 online. The formula is simple: Take a powerful, raw API (like OpenAI) and wrap it in a specific, niche workflow that saves people time.

๐Ÿš€ The Project: "Blog-to-Thread" Converter

In this tutorial, we will build a simple tool that takes a URL of a technical blog post and automatically converts it into a viral-style Twitter/X thread using GPT-4. This solves a real pain point for developer advocates and founders.

Step 1: The Tech Stack

We are keeping it simple to ensure we ship this weekend. No complex React setups, no Redux, no Kubernetes.

Step 2: Project Setup

First, create a folder and set up your virtual environment. You'll need your OpenAI API Key.

Terminal
mkdir thread-generator
cd thread-generator
python3 -m venv venv
source venv/bin/activate  # or venv\Scripts\activate on Windows
pip install flask openai requests beautifulsoup4 python-dotenv

Step 3: The Backend Logic

Create a file named app.py. This will handle the scraping of the blog post and the prompting of OpenAI.

Python (app.py)
from flask import Flask, render_template, request
import openai
import requests
from bs4 import BeautifulSoup
import os

app = Flask(__name__)
openai.api_key = os.getenv("OPENAI_API_KEY")

def scrape_blog(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.content, 'html.parser')
    # Simple extraction of paragraph text
    text = ' '.join([p.text for p in soup.find_all('p')])
    return text[:4000] # Truncate to avoid token limits

def generate_thread(text):
    prompt = f"Convert the following blog post text into a 6-tweet thread. Make it engaging and viral. Text: {text}"
    
    response = openai.chat.completions.create(
        model="gpt-4o",
        messages=[{"role": "user", "content": prompt}]
    )
    return response.choices[0].message.content

@app.route('/', methods=['GET', 'POST'])
def index():
    result = None
    if request.method == 'POST':
        url = request.form['url']
        content = scrape_blog(url)
        result = generate_thread(content)
    return render_template('index.html', result=result)

if __name__ == '__main__':
    app.run(debug=True)

Step 4: The Frontend

Create a folder named templates and inside it, create index.html. We'll use a simple glassmorphism style to make it look premium.

HTML (templates/index.html)
<!DOCTYPE html>
<html>
<head>
    <title>Blog to Thread Converter</title>
    <style>
        /* Add your CSS styles here (Dark mode recommended) */
        body { background: #0f172a; color: white; font-family: sans-serif; padding: 50px; }
        .container { max-width: 600px; margin: 0 auto; }
        textarea { width: 100%; height: 300px; background: #1e293b; color: white; border: 1px solid #334155; padding: 20px; }
        input { width: 100%; padding: 15px; margin-bottom: 20px; background: #1e293b; border: 1px solid #334155; color: white; }
        button { width: 100%; padding: 15px; background: #0ea5e9; color: white; border: none; font-weight: bold; cursor: pointer; }
    </style>
</head>
<body>
    <div class="container">
        <h1>Blog to Thread ๐Ÿงต</h1>
        <form method="POST">
            <input type="text" name="url" placeholder="Paste Blog URL here..." required>
            <button type="submit">Generate Thread โœจ</button>
        </form>
        
        {% if result %}
            <h3>Your Thread:</h3>
            <textarea>{{ result }}</textarea>
        {% endif %}
    </div>
</body>
</html>

Step 5: Monetization Strategy

Now, how do you make money? You have two main options for a "Weekend" build:

  1. The "Credit" Model: Give users 1 free thread, then ask them to buy credits (e.g., 10 threads for $5).
  2. The "Paywall" Model: The tool is free, but "Pro" features (like scheduling the tweets or using GPT-4 instead of GPT-3.5) require a subscription.

For this tutorial, we will use the simplest method: Stripe Payment Links.

  1. Go to your Stripe Dashboard.
  2. Create a Product named "100 Credits".
  3. Click "Create Payment Link".
  4. Copy the URL (e.g., buy.stripe.com/xyz...).
  5. In your Python app, simply redirect users to this link when they hit a limit (you can track limits using a simple local database or even browser cookies for an MVP).

Step 6: Deployment

Don't let your code sit on localhost. Deploy it for free using Render.

  1. Push your code to GitHub.
  2. Sign up for Render.com.
  3. Connect your GitHub repo.
  4. Select "Web Service" and choose Python.
  5. Render will automatically detect `app.py` and `requirements.txt`.
  6. Add your `OPENAI_API_KEY` in the Environment Variables section.
  7. Click "Deploy".

Conclusion

You now have a live Micro-SaaS. It solves a specific problem (content repurposing), it uses a powerful engine (OpenAI), and it has a way to accept money (Stripe). The next step is distribution: post your tool on Product Hunt, Reddit (r/SideProject), and Twitter.